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Abstract
The decomposition theory of the U(1) gauge potential has been studied. A
rigorous proof of the London assumption is given. By making use of this
gauge potential decomposition and the φ-mapping topological current theory,
the precise expression for �∇ × �V is obtained, and the topology in quantum
mechanics is discussed.

1. Introduction

In recent years, the decomposition theory of the gauge potential has been playing a more and
more important role in both theoretical physics and mathematics, and has become an important
aspect of topological field theory [1, 2]. One of the authors (Duan) has been engaged in
study in this field for a long time, and has made much progress in many problems using this
decomposition theory, such as the decomposition of the SO(N) spin connection, the structure
of the GBC topological current, the decomposition of the SU(N) connection and the effective
theory of SU(N) QCD [3–7].

In this paper the decomposition theory of the U(1) electromagnetic gauge potential in
terms of the condensate wavefunction has been studied. This decomposition reveals the inner
structure of the gauge potential, and establishes a direct relationship between differential
geometry and the topology of the gauge field. Based on this decomposition, a direct relationship
between the electromagnetic gauge potential and the velocity field in quantum mechanics is
given, which is just the London assumption in superconductivity [8]. Furthermore, by making
use of this gauge potential decomposition and the φ-mapping topological current theory, the
precise topological expression for �∇× �V is obtained, and the vortices in quantum mechanics are
characterized by the φ-mapping topological numbers—Hopf indices and the Brouwer degrees.

1 Author to whom any correspondence should be addressed.

0953-8984/02/347941+07$30.00 © 2002 IOP Publishing Ltd Printed in the UK 7941

http://stacks.iop.org/JPhysCM/14/7941


7942 Y-S Duan et al

2. Decomposition of the U (1) gauge potential

In the theory of superconductivity, the condensate wavefunction ψ(x) is the order parameter
of the charged continuum, which is a section of the complex line bundle. The U(1) covariant
derivative Diψ and its complex conjugate (Diψ)∗ are introduced to describe the interaction
between ψ and the electromagnetic field:

Diψ = ∂iψ − i
e

h̄c
aiψ, (1)

(Diψ)∗ = ∂iψ
∗ + i

e

h̄c
aiψ

∗, (2)

where i = 1, 2, 3 and ai is the magnetic gauge potential vector. The magnetic field tensor is
given by

fi j = ∂i a j − ∂ j ai . (3)

Multiplying (1) with ψ∗ and (2) with ψ , it is easy to find the decomposition expression
for the U(1) gauge potential:

ai = h̄c

2ie

1

ψ∗ψ
(ψ∗∂iψ − ∂iψ

∗ψ) − h̄c

2ie

1

ψ∗ψ
(ψ∗ Diψ − (Diψ)∗ψ). (4)

To study the meaning of the second term in the RHS of (4), we write ψ(x) in terms of two real
functions φ1(x) and φ2(x):

ψ(x) = φ1(x) + iφ2(x), (5)

and define a two-dimensional unit vector

na = φa

‖φ‖ (a = 1, 2) (6)

where ‖φ‖2 = φaφa = ψ∗ψ; then (4) can be expressed as

ai = h̄c

e
εabna∂i n

b − h̄c

e
εabna Di n

b. (7)

Let

ka = εabnb (8)

be another two-dimensional unit vector which is orthogonal to na :

kana = 0, kaka = 1; (9)

then using na and ka , equation (4) is rewritten as

ai = − h̄c

e
(ka∂i n

a − ka Di n
a). (10)

Let ua be a unit vector field satisfying

Di u
a = 0 (uaua = 1) (11)

and expressed as

ua = cos θna + sin θka; (12)

it can be proved that

−ka Di n
a = ∂iθ. (13)

Therefore the covariant derivative part of (10) is identified as the gradient of a phase factor θ ,
and (4) can be re-expressed as

ai = h̄c

2ie

[
1

ψ∗ψ
(ψ∗∂iψ − ∂iψ

∗ψ) + ∂iθ

]
. (14)
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We see that the second term of (14), h̄c
2ie ∂iθ , behaves as a U(1) gauge transformation of ai ,

which contributes nothing to the gauge field tensor f i j defined by (3) and can be ignored in U(1)

decomposition theory [4, 9, 10]. Therefore the decomposition of the U(1) gauge potential is
simplified as

ai(ψ) = h̄c

2ie

1

ψ∗ψ
(ψ∗∂iψ − ∂iψ

∗ψ), (15)

where ai(ψ) means that the magnetic gauge potential ai possesses an inner structure in terms
of charged condensate wavefunction ψ and ψ∗. Formula (15) is a fundamental expression in
U(1) topological quantum mechanics.

3. The London assumption

It is well known that, as semi-phenomenological scenarios of the low-dimensional BEC
continuum, the non-linear Gross–Pitaevskii (GP) equation for superfluid and the Ginzburg–
Landau (GL) equation for superconductivity are important. The GP equation is known to
be [11]

ih̄
∂

∂ t
ψ = − h̄2

2m
∂2

i ψ + U(x)ψ +
4π h̄2a

m
|ψ|2ψ, (16)

and the current is defined as

Ji = ρVi , (17)

where ρ is the density, ρ = |ψ|2. The GL equations for superconductors are given by [12]

1

2m

(
−ih̄∂i − e

c
Ai

ext

)2

ψ + aψ + b|ψ|2ψ = 0, (18)

( �∇ × �B)i = 4π

c
Ji , (19)

where the current Ji is covariant under U(1) gauge transformation:

Ji = eρVi − e2

mc
ρ Ai

ext , (20)

with Ai
ext the external electromagnetic potential.

In both (17) and (20), the velocity field is defined as in fundamental quantum mechanics:

Vi = h̄

2im

1

ψ∗ψ
(ψ∗∂iψ − ∂iψ

∗ψ). (21)

Comparing (15) with (21) we find an important inner relationship between the velocity field
Vi and the electromagnetic gauge potential ai(ψ):

ai(ψ) = mc

e
Vi ; (22)

this is just the London assumption [8]. This gives the mechanism whereby the creation of the
intrinsic electromagnetic field is due to the motion of condensate wavefunction ψ; i.e., the
magnetic field

�B = �∇ × �a (23)

is produced by �∇ × �V . This is the essence and significance of the London assumption. Finally,
it must be pointed out that the above proof of the London assumption necessarily depends on
the decomposition theory of the U(1) gauge potential.
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4. The topology in quantum mechanics

In traditional quantum mechanics, the wavefunction is usually expressed in the form

ψ = |ψ|ei�(�x), (24)

and the velocity field �V becomes the gradient of the phase factor �(�x):

�V = h̄

m
�∇�, (25)

which directly leads to a trivial curl-free result:

�∇ × �V = 0. (26)

By the London assumption (22), this means that the curl motion of the charged wavefunction
can never produce a magnetic field. Nearly half a century ago, Onsager and Feynman found
that the statement �∇ × �V = 0 must be modified, and Landau predicted that �∇ × �V can be non-
zero at a singular vortex line, and behaves as a δ-function [13]. Therefore, it is indispensable
to study what the exact expression for �∇ × �V is in topological field theory.

In this paper, using the unit vector na defined in (6), the expression for the velocity field (21)
is rewritten as

V i = h̄

m
εabna∂i n

b, (27)

and we can find a non-zero expression for �∇ × �V :

( �∇ × �V )i = h̄

m

1

2
εi jkεab∂ j n

a∂knb. (28)

Noticing that ∂i na = ∂i φ
a

‖φ‖ + φa∂i
1

‖φ‖ , and using the Green function relation in φ-space


φ ln ‖φ‖ = 2πδ2( �φ),

(

φ = ∂

∂φa

∂

∂φa

)
, (29)

it can be proved that [3, 5]:

( �∇ × �V )i = h

m
δ2( �φ)Di

(
φ

x

)
, (30)

where Di (
φ

x ) = 1
2ε

i jk
εab∂ jφ

a∂kφ
b is the Jacobian vector. The above formula with the singular

function δ2( �φ) is just the precise topological expression for �∇ × �V that Landau and Feynman
expected to find. This expression provides an important conclusion:

�∇ × �V
{= 0, iff �φ �= 0;

�= 0, iff �φ = 0.
(31)

According to the φ-mapping topological current theory [14], the two-dimensional topological
current is defined as

j i = 1

2π

1

2
εi jkεab∂ j n

a∂knb = δ2( �φ)Di

(
φ

x

)
; (32)

thus �∇ × �V can be expressed as a topological current:

( �∇ × �V )i = h

m
j i . (33)

The implicit function theory shows that [15], under the regular condition Di (φ/x) �= 0,
the general solutions of

φ1(x, y, z) = 0, φ2(x, y, z) = 0 (34)
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can be expressed as

x = x j(s), y = y j(s), z = z j (s), (35)

which represent the N isolated singular strings L j ( j = 1, 2, . . . , N) with parameter s. In
quantum mechanics these singular strings are just the vortex lines. In δ-function theory [16],
one can prove

δ2( �φ) =
N∑

j=1

β j

∫
L j

δ3(�x − �x j(s))

|D(
φ

u

)|� j

ds, (i = 1, 2, 3) (36)

where D(
φ

u )� j = ( 1
2ε jkεmn

∂φm

∂u j
∂φn

∂uk ), and � j is the j th planar element transverse to L j with
local coordinates (u1, u2). The positive integer β j is the Hopf index of φ-mapping. Meanwhile,
the direction vector of L j is given by

dx i

ds

∣∣∣∣
x j

= Di (φ/x)

D(φ/u)

∣∣∣∣
x j

. (37)

Then from (36) and (37) we find the important inner topological structure of �∇ × �V :

( �∇ × �V )i = h

m
j i = h

m

N∑
j=1

β jη j

∫
L j

dx i

ds
δ3(�x − �x j(s)) ds, (38)

where η j is the Brouwer degree, η j = sgn D(φ/u) = ±1. From (38), the winding number of
�φ for around L j is

W j = β jη j; (39)

therefore the vorticity of the vortex line L j is

� j =
∫

� j

�∇ × �V · d�s = h

m
W j , (40)

and the total vorticity on a surface � should be

� =
∫

�

�∇ × �V · d�s = h

m

N∑
j=1

W j . (41)

This is the topological essence of the vorticity in quantum mechanics.
In the superconductivity theory, using the unit vector na , the expression for the magnetic

gauge potential vector (15) can be rewritten as

ai = h̄c

e
εabna∂i n

b, (42)

and the gauge field tensor fi j is

fi j = h̄c

e
εab∂i n

a∂ j n
b.

fi j can be re-expressed in a δ-function form:

fi j = h̄c

e
2πεi jkδ

2( �φ)Dk

(
φ

x

)
= 2π

h̄c

e
εi jk j k, (43)

where j i is the two-dimensional topological current defined in (32). The intrinsic magnetic
field defined from fi j is given by

Bi = 1
2εi jk f jk = �0 j i , (44)
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where �0 = hc
e is the unit flux quantum; therefore,

Bi = �0δ
2( �φ)Di

(
φ

x

)
. (45)

From (38) we find that there are N singular vortex lines contributing to Bi :

Bi = �0

N∑
j=1

W j

∫
L j

dx i

ds
δ3(�x − �x j(s)) ds, (46)

where each vortex line L j carries a magnetic flux � j = W j�0, and this leads to the
phenomenon of magnetic flux quantization:

� =
∫

�

Bi dσi = �0

N∑
j=1

W j . (47)

This is the topological essence of flux quantization.
For the GL theory, there is a relation [12, 17]

�B − λ2∇2 �B = mc

e
�∇ × �V , (48)

where λ is the penetration depth, λ2 = mc2

4πρe2 ; in the London approximation, λ is a constant.
From (38) we have

�B − λ2∇2 �B = �0

N∑
j=1

W j

∫
L j

d�x
ds

δ3(�x − �x j(s)) ds. (49)

We see that in the simple case W j = 1, equation (49) is just the so-called modified London
equation [17, 18]. This means that when the condensate wavefunction ψ has no zero values,
�φ �= 0, i.e., δ2( �φ) = 0, and �B − λ2∇2 �B = 0, which just corresponds to the Meissner state;
while in the case of a mixed state, �φ possesses N isolated zeros, δ2( �φ) �= 0, and thus a type-II
superconductor is penetrated by an array of N vortices, which are created from the zero points
of �φ and carry a quantum flux proportional to the winding number W j .
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